
Technische Universität München WS 2017/18
Institut für Informatik
Theoretical Computer Science

Fundamental Algorithms 11 - Solution Examples

Exercise 1 (Hypergraphs)
A hypergraph extends the concept of a graph in the sense that edges are allowed to connect an
arbitrary number of vertices (instead of exactly two). Hence, a hypergraph is defined as a tuple
(V, H), where V is a set of vertices and H is a set of hyperedges, where H ⊂ P(H) \ {∅}, with P(H)
the power set (i.e., the set of all possible subsets) of H.

1. Give a suitable definition of the concept of a path in a hypergraph.

2. Now, consider the hypergraph S = (VS , HS) of “all” scientific articles, where VS is the set of
all authors, and each hyperedge h ∈ HS contains all authors of a specific scientific article.
The Erdös number Er(a) of an author a ∈ VS is defined as the length of the shortest path
in S that connects the specific vertex e ∈ V (e corresponds to the author Paul Erdös) to
a. Write down an algorithm to determine Er(a). Hint: Think about how graph algorithms
presented in the lecture might help you here.

3. Try to formulate the above problem as a graph problem, i.e. given (V, H) construct some
graph G such that the solution of a particular problem on G gives you the Erdös number.

Solution:
1. A path (of length n) exists between two vertices v and w in a hypergraph (V, H), if there

exists a sequence of hyperedges h1, h2, h3, . . . , hn and a sequence of vertices v0, v1, v2, . . . , vn

(where v = v0 and w = vn), such that (vk−1, vk) ∈ hk for all 1 ≤ k ≤ n.

2. For a (non-directed, non-weighted) graph, breadth-first traversal will find the shortest path
from a given root node to any reachable node in the graph. Hence, in ComputeErd we
adapt breadth-first search for hypergraphs. Instead of using an array mark that just labels
vertices as already visited, we use an array erd that contains the Erdös number of a already
visited vertices. Non-visited vertices will be initialized to contain −1 in the beginning.
HyperNode needs to be a suitable data structure to represent a node of a hypergraph. We
assume that a HyperNode represent one vertex and stores the set of hyperedges that contain
this vertex (or a reference to these hyperedges). Each hyperedge is a set of vertices.

3. For the Erdös number, it is insignificant which articles are actually responsible for the
connection. Hence, we define a graph VS , ES , where two authors a, b ∈ VS are connected by
an edge, i.e. (a, b) ∈ ES , iff there exists a hyperedge HS with a ∈ HS and b ∈ HS . Then we
can use the regular breadth-first traversal on graphs to determine the Erdös number.
However, scientists who are interested in their Erdös number actually do want to know which
articles define the connection, so we need to set up a different graph (V, E):
• The set of nodes is defined as V := VS ∪HS , i.e. each author and each article define a
vertex.
• E contains an edge between an author a ∈ VS and an article p ∈ HS , iff a was an author
of p, i.e. a ∈ p.

1



Now, a shortest-path search in the resulting graph (using breadth-first search) will deliver
the Erdös number and the connecting papers.

Algorithm 1: ComputeErd
Input: e: HyperNode, correspoding to Erdös

x: HyperNode, corresponding to the Author
n: Integer, number of nodes in the graph

Result: the Erdös number of x (or −1 if no path exists)
for i = 1 to n do erd[i]← −1;
erd[e.key]← 0;
act← [e]; // Queue of active nodes
while act 6= [] do

v ← remove(act); // Get next queued node
if v = x then return erd[v.key];
co← {}; // Set of co-authors
for a ∈ v.edges do co← co ∪ a;
for a ∈ co do

if erd[a.key] < 0 then
erd[a.key]← erd[v.key] + 1;
act← act ◦ a;

end
end

end
return −1 // No path found

2


